人教版初二数学上册压轴题质量检测试题
人教版初二数学上册压轴题质量检测试题1.(初步探索)(1)如图:在四边形中,,,、分别是、上的点,且,探究图中、、之间的数量关系.(1)(1)小明同学探究此问题的方法是:延长到点,使.连接,先证明,再证明,可得出结论,他的结论应是;(2)(灵活运用)(2)如图2,若在四边形中,,,、分别是、上的点,且,上述结论是否仍然成立,并说明理由;3.已知ABC是等边三角形,ADE的顶点D在边BC上(1)如图1,若AD=DE,∠AED=60°,求∠ACE的度数;(2)如图2,若点D为BC的中点,AE=AC,∠EAC=90°,连CE,求证:CE=2BF;(3)如图3,若点D为BC的一动点,∠AED=90°,∠ADE=30°,已知ABC的面积为4,当点D在BC上运动时,ABE的面积是否发生变化?若不变,请求出其面积;若变化请说明理由.3.已知点A在x轴正半轴上,以OA为边作等边OAB,A(x,0),其中x是方程的解.(1)求点A的坐标;(2)如图1,点C在y轴正半轴上,以AC为边在第一象限内作等边ACD,连DB并延长交y轴于点E,求的度数;(3)如图2,点F为x轴正半轴上一动点,点F在点A的右边,连接FB,以FB为边在第一象限内作等边FBG,连GA并延长交y轴于点H,当点F运动时,的值是否发生变化?若不变,求其值;若变化,求出其变化的范围.4.如图1,在平面直角坐标系中,AO=AB,∠BAO=90°,BO=8cm,动点D从原点O出发沿x轴正方向以acm/s的速度运动,动点E也同时从原点O出发在y轴上以bcm/s的速度运动,且a,b满足关系式a2+b2﹣4a﹣2b+5=0,连接OD,OE,设运动的时间为t秒.(1)求a,b的值;(2)当t为何值时,BAD≌OAE;(3)如图2,在第一象限存在点P,使∠AOP=30°,∠APO=15°,求∠ABP.5.在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足.(1)求点A和点B的坐标;(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标.6.如图,ABC是等边三角形,点D、E分别是射线AB、射线CB上的动点,点D从点A出发沿射线AB移动,点E从点B出发沿BG移动,点D、点E同时出发并且运动速度相同.连接CD、DE.(1)如图①,当点D移动到线段AB的中点时,求证:DE=DC.(2)如图②,当点D在线段AB上移动但不是中点时,试探索DE与DC之间的数量关系,并说明理由.(3)如图③,当点D移动到线段AB的延长线上,并且ED⊥DC时,求∠DEC度数.7.等腰中,∠BAC=90°,AB=AC,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.(1)如图(1),已知C点的横坐标为-1,直接写出点A的坐标;(2)如图(2),当等腰运动到使点D恰为AC中点时,连接DE.求证:∠ADB=∠CDE;(3)如图(3),若点A在x轴上,且A(-4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角BOD和等腰直角ABC,连结CD交,轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度.8.已知ABC中,∠BAC=60°,以AB和BC为边向外作等边ABD和等边BCE.(1)连接AE、CD,如图1,求证:AE=CD;(2)若N为CD中点,连接AN,如图2,求证:CE=2AN(3)若AB⊥BC,延长AB交DE于M,DB=,如图3,则BM=(直接写出结果)【参考答案】2.(1)(初步探索)结论:∠BAE+∠FAD=∠EAF;(2)(灵活运用)成立,理由见解析【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定ABE≌ADG,进而得出∠BAE=∠D解析:(1)(初步探索)结论:∠BAE+∠FAD=∠EAF;(2)(灵活运用)成立,理由见解析【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定ABE≌ADG,进而得出∠BAE=∠DAG,AE=AG,再判定AEF≌AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF,据此得出结论;(2)延长FD到点G,使DG=BE,连接AG,先判定ABE≌ADG,进而得出∠BAE=∠DAG,AE=AG,再判定AEF≌AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.(1)解:∠BAE+∠FAD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,∵,∴,∵DG=BE,,∴ABE≌ADG,∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD,DG=BE,∴,且AE=AG,AF=AF,∴AEF≌AGF,∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠FAD=∠EAF;(2)如图2,延长FD到点G,使DG=BE,连接AG, ∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴ABE≌ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴AEF≌AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF【点睛】本题考查了全等三角形的判定以及性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等.3.(1)60°;(2)见解析;(3)不变,【分析】(1)由题意,先证ADE是等边三角形,再证BAD≌CAE,得∠ACE=∠B=60°;(2)由题意,先求出∠BEC=30°,然后求出∠CF解析:(1)60°;(2)见解析;(3)不变,【分析】(1)由题意,先证ADE是等边三角形,再证BAD≌CAE,得∠ACE=∠B=60°;(2)由题意,先求出∠BEC=30°,然后求出∠CFE=90°,利用直角三角形中30度角所对直角边等于斜边的一半,即可得证;(3)延长AE至F,使EF=AE,连DF、CF,先证明ADF是等边三角形,然后证明EGF≌EHA,结合HG是定值,即可得到答案.【详解】解:(1)根据题意,∵AD=DE,∠AED=60°,∴ADE是等边三角形,∴AD=AE,∠DAE=60°,∵AB=AC,∠BAC=60°,∴,即,∴BAD≌CAE,∴∠ACE=∠B=60°;(2)连CF,如图:∵AB=AC=AE,∴∠AEB=∠ABE,∵∠BAC=60°,∠EAC=90°,∴∠BAE=150°,∴∠AEB=∠ABE=15°;∵ACE是等腰直角三角形,∴∠AEC=45°,∴∠BEC=30°,∠EBC=45°,∵AD垂直平分BC,点F在AD上,∴CF=BF,∴∠FCB=∠EBC=45°,∴∠CFE=90°,在直角CEF中,∠CFE=90°,∠CEF=30°,∴CE=2CF=2BF;(3)延长AE至F,使EF=AE,连DF、CF,如图:∵∠AED=90°,EF=AE,∴DE是中线,也是高,∴ADF是等腰三角形,∵∠ADE=30°,∴∠DAE=60°,∴ADF是等边三角形;由(1)同理可求∠ACF=∠ABC=60°,∴∠ACF=∠BAC=60°,∴CF∥AB,过E作EG⊥CF于G,延长GE交BA的延长线于点H,易证EGF≌EHA,∴EH=EG=HG,∵HG是两平行线之间的距离,是定值,∴SABE=SABC=;【点睛】本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,垂直平分线的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.4.(1);(2);(3)的值是定值,9.【分析】(1)先求出方程的解为,即可求解;(2)由“SAS”可证CAO≌DAB,可得∠DBA=∠COA=90°,由四边形内角和定理可求解;(3)解析:(1);(2);(3)的值是定值,9.【分析】(1)先求出方程的解为,即可求解;(2)由“SAS”可证CAO≌DAB,可得∠DBA=∠COA=90°,由四边形内角和定理可求解;(3)由“SAS”可证ABG≌OBF可得OF=AG,∠BAG=∠BOF=60°,可求∠OAH=60°,可得AH=6,即可求解.【详解】解:(1)∵是方程的解.解得:,检验当时,,,∴是原方程的解,∴点;(2)∵ACD,ABO是等边三角形,∴AO=AB,AD=AC,∠BAO=∠CAD=60°,∴∠CAO=∠BAD,且AO=AB,AD=AC,∴CAO≌DAB(SAS)∴∠DBA=∠COA=90°,∴∠ABE=90°,∵∠AOE+∠ABE+∠OAB+∠BEO=360°,∴∠BEO=120°;(3)GH−AF的值是定值,理由如下:∵ABC,BFG是等边三角形,∴BO=AB=AO=3,FB=BG,∠BOA=∠ABO=∠FBG=60°,∴∠OBF=∠ABG,且OB=AB,BF=BG,∴ABG≌OBF(SAS),∴OF=AG,∠BAG=∠BOF=60°,∴AG=OF=OA+AF=3+AF,∵∠OAH=180°−∠OAB−∠BAG,∴∠OAH=60°,且∠AOH=90°,OA=3,∴AH=6,∴GH−AF=AH+AG−AF=6+3+AF−AF=9.【点睛】本题是三角形综合题,考查了分式方程的解法,等边三角形性质,全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力.5.(1)a=2,b=1;(2)t=或t=8;(3)∠ABP=105°.【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论;解析:(1)a=2,b=1;(2)t=或t=8;(3)∠ABP=105°.【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论;(2)先由运动得出BD=|8﹣2t|,再由全等三角形的性质的出货BD=OE,建立方程求解即可得出结论.(3)先判断出OAP≌BAQ(SAS),得出OP=BQ,∠ABQ=∠AOP=30°,∠AQB=∠APO=15°,再求出∠OAP=135°,进而判断出OAQ≌BAQ(SAS),得出∠OQA=∠BQA=15°,OQ=BQ,再判断出OPQ是等边三角形,得出∠OQP=60°,进而求出∠BQP=30°,再求出∠PBQ=75°,即可得出结论.【详解】解:(1)∵a2+b2﹣4a﹣2b+5=0,∴(a﹣2)2+(b﹣1)2=0,∴a﹣2=0,b﹣1=0,∴a=2,b=1;(2)由(1)知,a=2,b=1,由运动知,OD=2t,OE=t,∵OB=8,∴DB=|8﹣2t|∵BAD≌OAE,∵DB=OE,∴|8﹣2t|=t,解得,t=(如图1)或t=8(如图2);(3)如图3,过点A作AQ⊥AP,使AQ=AP,连接OQ,BQ,PQ,则∠APQ=45°,∠PAQ=90°,∵∠OAB=90°,∴∠PAQ=∠OAB,∴∠OAB+∠BAP=∠PAQ+∠BAP,即:∠OAP=∠BAQ,∵OA=AB,AD=AD,∴OAP≌BAQ(SAS),∴OP=BQ,∠ABQ=∠AOP=30°,∠AQB=∠APO=15°,在AOP中,∠AOP=30°,∠APO=15°,∴∠OAP=180°﹣∠AOP﹣∠APO=135°,∴∠OAQ=360°﹣∠OAP﹣∠PAQ=135°﹣90°=135°=∠OAP,∵OA=AB,AD=AD,∴OAQ≌BAQ(SAS),∴∠OQA=∠BQA=15°,OQ=BQ,∵OP=BQ,∴OQ=OP,∵∠APQ=45°,∠APO=15°,∴∠OPQ=∠APO+∠APQ=60°,∴OPQ是等边三角形,∴∠OQP=60°,∴∠BQP=∠OQP﹣∠OQA﹣∠BQA=60°﹣15°﹣15°=30°,∵BQ=PQ,∴∠PBQ=(180°﹣∠BQP)=75°,∴∠ABP=∠ABQ+∠PBQ=30°+75°=105°.【点睛】本题是三角形综合题,主要考查了配方法、非负数的性质、三角形内角和定理、等边三角形的判定和性质、全等三角形的判定及性质,构造出全等三角形是解题的关键.6.(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)解析:(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;(3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解.【详解】(1)∵,∴.∵,∴,∴,∴,∴,.(2)如图,过点F作FH⊥AO于点H∵AF⊥AE∴∠FHA=∠AOE=90°,∵ ∴∠AFH=∠EAO又∵AF=AE,在和中 ∴∴AH=EO=2,FH=AO=4∴OH=AO-AH=2∴F(-2,4) ∵OA=BO, ∴FH=BO在和中 ∴∴HD=OD∵ ∴HD=OD=1∴D(-1,0)∴D(-1,0),F(-2,4);(3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S∴∴, ∴∴ ∴∴等腰∴NQ=NO,∵NG⊥PN, NS⊥EG∴ ∴, ∴ ∵,∴ ∵点E为线段OB的中点∴ ∴ ∴ ∴ ∴∴ ∴∴等腰∴NG=NP, ∵∴ ∴∠QNG=∠ONP在和中 ∴∴∠NGQ=∠NPO,GQ=PO∵,∴PO=PB∴∠POE=∠PBE=45°∴∠NPO=90°∴∠NGQ=90°∴∠QGR=45°. 在和中 ∴.∴QR=OE在和中 ∴∴QM=OM.∵NQ=NO,∴NM⊥OQ∵∴等腰∴ ∵ ∴在和中 ∴∴NS=EM=4,MS=OE=2∴N(-6,2).【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解.7.(1)见详解;(2)DE=DC,理由见详解;(3)∠DEC=45°【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证(2)猜测,寻找条件证明即可.最常用解析:(1)见详解;(2)DE=DC,理由见详解;(3)∠DEC=45°【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证(2)猜测,寻找条件证明即可.最常用的是证明两个三角形全等,但图中给出的三角形中并未出现全等三角形,所以添加辅助线:在射线AB上截取,这样只要证明即可.利用等边三角形的性质及可知为等边三角形,这样通过两个等边三角形即可证明.(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,用同样的方法证明,又因为ED⊥DC,所以为等腰之间三角形,则∠DEC度数可求.【详解】由题意可知 ∵D为AB的中点∵为等边三角形,(2)理由如下:在射线AB上截取,连接EF∵为等边三角形∴为等边三角形由题意知即在和中,(3)如图,在射线CB上截取,连接DF∵为等边三角形∴为等边三角形由题意知即在和中,∵ED⊥DC∴为等腰直角三角形【点睛】本题主要考查了等腰三角形,等边三角形,全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键.8.(1)A(0,1);(2)见解析;(3)不变,BP= 2.【分析】(1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:ACF≌ABO(AAS),结合该全等三角形的对应边相等易解析:(1)A(0,1);(2)见解析;(3)不变,BP= 2.【分析】(1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:ACF≌ABO(AAS),结合该全等三角形的对应边相等易得OA的长度,由点A是y轴上一点可以推知点A的坐标;(2)过点C作CG⊥AC交y轴于点G,则ACG≌ABD(ASA),即得CG=AD=CD,∠ADB=∠G,由∠DCE=∠GCE=45°,可证DCE≌GCE(SAS)得∠CDE=∠G,从而得到结论;(3)BP的长度不变,理由如下:如图(3),过点C作CE⊥y轴于点E,构建全等三角形:CBE≌BAO(AAS),结合全等三角形的对应边相等推知:CE=BO,BE=AO=4.再结合已知条件和全等三角形的判定定理AAS得到:CPE≌DPB,故BP=EP=2.(1)如图(1),过点C作CF⊥y轴于点F,∵CF⊥y轴于点F,∴∠CFA=90°,∠ACF+∠CAF=90°,∵∠CAB=90°,∴∠CAF+∠BAO=90°,∴∠ACF=∠BAO,在ACF和ABO中,,∴ACF≌ABO(AAS),∴CF=OA=1,∴A(0,1);(2)如图2,过点C作CG⊥AC交y轴于点G,∵CG⊥AC,∴∠ACG=90°,∠CAG+∠AGC=90°,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠AGC=∠ADO,在ACG和ABD中,,∴ACG≌ABD(AAS),∴CG=AD=CD,∠ADB=∠G,∵∠ACB=45°,∠ACG=90°,∴∠DCE=∠GCE=45°,在DCE和GCE中,,∴DCE≌GCE(SAS),∴∠CDE=∠G,∴∠ADB=∠CDE;(3)BP的长度不变,理由如下:如图(3),过点C作CE⊥y轴于点E.∵∠ABC=90°,∴∠CBE+∠ABO=90°.∵∠BAO+∠ABO=90°,∴∠CBE=∠BAO.∵∠CEB=∠AOB=90°,AB=AC,∴CBE≌BAO(AAS),∴CE=BO,BE=AO=4.∵BD=BO,∴CE=BD.∵∠CEP=∠DBP=90°,∠CPE=∠DPB,∴CPE≌DPB(AAS),∴BP=EP=2.【点睛】本题考查了三角形综合题.主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,构建全等三角形.9.(1)见解析(2)见解析(3)【分析】(1)先判断出∠DBC=∠ABE,进而判断出DBC≌ABE,即可得出结论;(2)先判断出ADN≌FCN,得出CF=AD,∠NCF=∠AN解析:(1)见解析(2)见解析(3)【分析】(1)先判断出∠DBC=∠ABE,进而判断出DBC≌ABE,即可得出结论;(2)先判断出ADN≌FCN,得出CF=AD,∠NCF=∠AND,进而判断出∠BAC=∠ACF,即可判断出ABC≌CFA,即可得出结论;(3)先判断出ABC≌HEB(ASA),得出,,再判断出ADM≌HEM (AAS),得出AM=HM,即可得出结论.(1)解:∵ABD和BCE是等边三角形,∴BD=AB,BC=BE,∠ABD=∠CBE=60°,∴∠ABD+∠ABC=∠CBE+∠ABC,∴∠DBC=∠ABE,∴ABE≌DBC(SAS),∴AE=CD;(2)解:如图,延长AN使NF=AN,连接FC,∵N为CD中点,∴DN=CN,∵∠AND=∠FNC,∴ADN≌FCN(SAS),∴CF=AD,∠NCF=∠AND,∵∠DAB=∠BAC=60°∴∠ACD +∠ADN=60°∴∠ACF=∠ACD+∠NCF=60°,∴∠BAC=∠ACF,∵ABD是等边三角形,∴AB=AD,∴AB=CF,∵AC=CA,∴ABC≌CFA (SAS),∴BC=AF,∵BCE是等边三角形,∴CE=BC=AF=2AN;(3)解: ∵ABD是等边三角形,∴,∠BAD=60°,在中,∠ACB=90°-∠BAC=30°,∴,如图,过点E作EH // AD交AM的延长线于H,∴∠H=∠BAD=60°,∵BCE是等边三角形,∴BC=BE,∠CBE=60°,∵∠ABC=90°,∴∠EBH=90°-∠CBE=30°=∠ACB,∴∠BEH=180°-∠EBH-∠H=90°=∠ABC,∴ABC≌HEB (ASA),∴,,∴AD=EH,∵∠AMD=∠HME,∴ADM≌HEM (AAS),∴AM=HM,∴∵,,∴.故答案为:.【点睛】此题是三角形综合题,主要考查了等边三角形的性质,含30°角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。